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Abstract

Tree-shaped networks are now being considered as small-scale architectures for high-densities in electronics cooling and fuel cells
design. This paper documents the optimization of tree-shaped inserts of high thermal conductivity. The new feature is the presence of
loops in the tree canopy. Every feature of the tree-with-loops architecture is optimized numerically. Two classes of trees with loops
are considered: loops with one size, and loops with two sizes. The performance of trees with loops is compared with that of trees without
loops and designs with purely radial inserts. It is shown that dendrites and loops are features that become attractive as scales decrease
and complexity increases. In the same direction, the robustness of tree-with-loops architectures increases.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The progress toward smaller scales in electronics and the
cooling architectures for electronics packages puts a pro-
gressively higher price on space. This means that at small
enough scales convection ceases as a viable solution for
cooling: the space that the fluid-filled cooling channels
would occupy is just too valuable not to be allocated to
electronics. In this limit, the way to channel the generated
heat out of each small volume element is by installing
appropriately shaped and placed inserts of high-
conductivity.

Conductive inserts are architecturally analogous to the
classical fins used in convection. They can be viewed as
extended surfaces (needles, blades) that invade the medium,
and conduct away the stream of generated heat. Just like in
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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the design of classical fins, where compactness has led to
assemblies of fins (arrays, bushes), the maximization of
heat transfer density in conduction has led to tree-shaped
inserts. This technological step coincided with the emer-
gence of constructal theory [1–5], according to which flow
structures such as trees are deterministic results of a princi-
ple of maximization of flow access in configurations that
are free to morph. The literature on tree-shaped flow archi-
tectures is expanding rapidly, not only in electronics
cooling, but also in fuel cells, heat exchangers, fluid distri-
bution systems, augmentation, chemical reactors, product
platform design, etc. [6–26].

In this paper, we examine a new class of tree-shaped
structures for conduction cooling: trees with loops. This
direction of inquiry is bio-inspired, because ‘‘trees with
loops’’ is the basic architecture for leaf venation. We exam-
ine how loops and complexity affect the optimized architec-
ture and its maximized global performance and robustness.
We also compare the architecture and performance of trees
with loops with older tree architectures without loops [27].
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Nomenclature

A0,1 area, m2

Ap area covered by kp material, m2

d the smallest length scale, m
D thickness
i order of tree link or construct
k0 thermal conductivity of heat generating mate-

rial, W m�1 K�1

kp high thermal conductivity, W m�1 K�1

~k conductivity ratio, kp/k0

L length, m
N number of spots on the rim touched by kp blades
q000 volumetric heat generation rate, W m�3

R0 disc radius, m
T temperature, K
x radial coordinate, m
y transversal coordinate, m

Greek symbols

b angle, rad
/ area ratio, Ap/A

Subscripts

max maximum
min minimum
mm minimized twice
mmm minimized three times
opt optimum
p high-conductivity path

Superscript

(~) dimensionless, Eq. (7)
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2. One loop size, one branching level

Consider first the two-dimensional structure with loops
of one size shown in Fig. 1. The structure consists of blades
Fig. 1. Disc-shaped body with uniform heat generation, central heat sink,
high-conductivity blades, loops of one size, and one level of bifurcation or
pairing.
of high-conductivity (kp) embedded in a heat-generating
disc of radius R0 and lower conductivity k0. There are
two blade sizes, (D0,L0) and (D1,L1), where the L’s are
lengths and the D’s are thicknesses.

There are N points where the structure touches the rim.
The structure is an assembly of trees with only one level of
bifurcation, where each L0 blade is continued by two L1

blades. The assembly is such that each of the N points on
the rim is touched by two of the branched trees. This last
feature generates the loops, which are quadrilateral. In this
configuration the number of blades that touch the center
(n0) is equal to N.

Heat is generated steadily in the k0 material, and the vol-
umetric heat generation rate is uniform, q000. The heat cur-
rent integrated over the entire disc ðq000pR2

0Þ is collected by
the kp blades and channeled to the center of the disc, which
serves as heat sink of temperature Tmin. The rim is insu-
lated. The highest temperature Tmax occurs on the rim, in
the spots where the radius that is collinear with L0 inter-
sects the rim. The global thermal resistance of this heat
flow structure is expressed in dimensionless form by

eT max ¼
T max � T min

q000R2
0=k0

ð1Þ

The objective is to morph the flow structure in every possi-
ble way so that its global resistance eT max is minimized.
There are several constraints to consider. One is the disc
radius R0. If, in addition, we fix the distance d between
two consecutive kp-points on the rim, then the number of
peripheral points is fixed (N = 2pR0/d), and so is the area
of the sector shown in the lower part of Fig. 1:

A0 ¼
pR2

0

2N
ð2Þ

Symmetry allows us to focus on heat conduction in the
sector of area A0. The perimeter of this area is insulated,



Fig. 2. The minimization of the overall thermal resistance with respect to
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with the exception of the heat sink (Tmin). An important
constraint is the total amount of kp material, which is rep-
resented by the total cross-sectional area of the blades pres-
ent in A0, namely

Ap ¼ L0

D0

2
þ L1D1 ð3Þ

Alternatively, the Ap and A0 constraints can be combined
to define the fixed volume fraction occupied by k0 material,

/ ¼ Ap

A0

ð4Þ

The structure of Fig. 1 was optimized numerically by
simulating the temperature field in a large number of con-
figurations, calculating the global resistance eT max, and
seeking morphological changes that induce decreases in
eT max. The equations governing steady state conduction in
the k0 and kp regions are, respectively

o2
eT

o~x2
þ o2

eT
o~y2
þ 1 ¼ 0 ð5Þ

o2
eT

o~x2
þ o2

eT
o~y2
¼ 0 ð6Þ

The dimensionless variables are defined as

ð~x; ~y; eD; eLÞ ¼ ðx; y;D; LÞ
R0

eT ¼ T � T min

q000R2
0=k0

ð7Þ

Eqs. (5) and (6) were solved by using a finite elements
code [28] based on triangular elements. The grid was
non-uniform in both ~x- and ~y-directions, and varied from
one geometry to the next. The appropriate mesh size was
determined by successive refinements, quadrupling the
number of elements from one mesh size to the next mesh
size until the criterion jðeT j

max � eT jþ1
maxÞ=eT j

maxj < 5� 10�4 is
Table 1
Numerical tests showing the achievement of grid independence (N = 6,
D1/D0 = 0.5, kp/k0 = 100, L0 = 0.72, / = 0.1)

Number of elements eT max jðeT j
max � eT jþ1

maxÞ=eT j
maxj

1201 0.107953 9.634 · 10�4

4804 0.108057 4.442 · 10�4

19,216 0.108105 1.942 · 10�4

76,864 0.108126

Table 2
Comparison between analytical [27] and numerical results (/ = 0.1 and
~k ¼ 300)

eR ðeL0Þopt (D0/D1)opt N ðeT maxÞmin [27] ðeT maxÞmin

2.3 0.1237 2.112 7.860 0.1894 0.2197
2.5 0.3269 2.139 8.533 0.2094 0.2344
3.0 0.8341 2.162 10.21 0.2712 0.2742
3.5 1.3515 2.290 11.81 0.3425 0.3204
4.0 1.8664 2.367 13.41 0.4225 0.3745
6.0 3.9224 2.636 19.58 0.8356 0.6855
8.0 5.9645 2.833 25.58 1.4030 1.1611

10.0 7.9945 2.978 31.50 2.1317 1.8085
satisfied. Here eT j
max represents the maximum temperature

calculated using the current mesh, and eT jþ1
max corresponds

to the next mesh, where the number of elements was qua-
drupled. Table 1 shows an example of how grid indepen-
dence was achieved. The following results were obtained
by using between 4000 and 40,000 triangular elements.

The accuracy of these numerical results were tested by
solving Eqs. (5) and (6) using our own MATLAB partial
the central blade length eL0.

Fig. 3. The minimization with respect to D1/D0 of the global resistance
already minimized with respect to eL0.
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differential equations toolbox code [28] and comparing the
results with the analytical results reported in Rocha et al.
[27] for the domain shown in Fig. 8 (see Section 3). Table 2
Fig. 4. The effect of the high-conductivity volume fraction / on the
optimized structure of Fig. 1.

Fig. 6. The effect of the size of the disc o
shows that the numerical and analytical results agree
within 18%. They agree even better (within 1%) when
N ffi 10, because the assumptions used in Ref. [27] are more
Fig. 5. The effect of the ratio of conductivities kp/k0 on the optimized
structure of Fig. 1.

n the optimized structure of Fig. 1.
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realistic in the present geometry. Note further that the
numerical and analytical results shown in Table 2 are
non-dimensionalized in accordance with Ref. [27], namely,
eR ¼ R0=A1=2

1 and eT max ¼ ðT max � T minÞ=ðq000A1=2
1 =k0Þ, where

the elemental area A1 is shown in the upper part of Fig. 8.
Fig. 2 shows the first stage of geometric optimization.

The global resistance has a minimum with respect to the
bifurcation radius eL0, when the other degree of freedom
(D1/D0) and constraints (N, kp/k0, /) are specified. The
lower part of Fig. 2 shows how eL1 and b vary as eL0

changes.
The optimization illustrated in Fig. 2 was performed for

many values of D1/D0, and the optimization results are
summarized in Fig. 3. There are two results, the optimized
radial blade length eL0, which is practically independent of
D1/D0, and the minimized global resistance ðeT maxÞmin,
which has a shallow minimum with respect to D1/D0. We
denote this smallest of all ðeT maxÞmin values by ðeT maxÞmm.
The configuration that corresponds to ðeT maxÞmm has been
drawn to scale in the inset of Fig. 3.

To summarize, the conductive flow structure can be
optimized with respect to two free geometric features, eL0

and D1/D0. In Figs. 4–6 we explored the sensitivity of the
optimized configuration to changes in the constraints. Figs.
Fig. 7. Design with radial blades.
4 and 5 show that the radius of bifurcation ðeL0Þopt is rela-
tively insensitive to changes in both / and kp/k0. We may
Fig. 8. Design with one level of bifurcation.

Fig. 9. The minimized overall thermal resistance as function of the
number of central blades.



Fig. 10. The effect of the number of central blades N on the optimal
central blade length ðeL0Þopt and optimal ratio (D1/D0)opt.
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take eL0 ffi 0:7 as a representative value for all the optimized
configurations that have N = 6 points on the rim. Figs. 4
and 5 also show that the ratio of blade thicknesses
(D1/D0)opt increases weakly as either / or kp/k0 increase.
This trend is reasonable because in this direction the
peripheral branches become more effective as conduits for
heat flow, hence their increasing thickness. In the same
direction, the minimized global thermal resistance
decreases. In the / and kp/k0 ranges covered by Figs. 4
and 5, the minimized global conductance varies roughly as

ðT maxÞmm ¼ 0:27/�0:67ðkp=k0Þ�0:56 ð8Þ

In Fig. 6 we show how the optimized structure and its
global performance respond to changes in global size
(R0), when the spacing between kp points on the rim (d)
is fixed. This is equivalent to changing the number of kp

points on the rim, or the number of radial blades N. The
disc radius increases in proportion with N, namely
R0 = Nd/(2p). One important conclusion is that the dimen-
sionless minimized global thermal resistance decreases
significantly with the size of the system until N is approxi-
mately equal to 20, beyond which ðeT maxÞmin is less sensitive
to changes in the value of N.

3. Comparison between radial, one-bifurcation and

one-loop designs

The radial design is shown in Fig. 7. The structure con-
sists of N blades of high-conductivity (kp) embedded in a
heat generating disc of radius R0 and lower conductivity
k0. The blades have the length R0 and thickness D. The glo-
bal thermal resistance of this flow structure is expressed in
dimensionless form by Eq. (1). The area of the sector
shown in Fig. 7 is given by Eq. (2). The area occupied by
the kp material is now given by

Ap ¼ R0D ð9Þ

The fixed volume fraction occupied by the kp material is
given by Eq. (4). The model consists of Eqs. (5) and (6)
and the boundary conditions presented in Section 2.

The design with one level bifurcation is shown in Fig. 8:
one kp blade stretches radially to the distance L0 from the
central heat sink, and continues with two tributary
branches that reach the rim. Each tributary branch reaches
the rim in the middle of the sector shown in Fig. 8. The
analysis used for the design with one loop size continues
to hold, Eqs. (1)–(7).

We solved Eqs. (5) and (6) subjected to the constraints
(2) and (4). The boundary conditions are the same as in
Section 2: the perimeter of the sector of area A0 is insu-
lated, with the exception of the heat sink Tmim. Fig. 9
shows that the global thermal resistance decreases when
the number of the radial blades increases. The design with
one level of bifurcation performs better than the design
with one loop in size. Both designs perform better than
the radial design when they are compared based on the
same number of central blades N. However, if they are
compared with the radial structure with 2N central blades,
the radial design performs better than the bifurcated design
when N 6 10. Said another way, in the bifurcated design
L0,opt vanishes when N 6 10 (Fig. 10), and the optimal
bifurcated structure becomes a radial structure with 2N
blades. This is why in Fig. 9 the curve for bifurcated struc-
tures merges with the curve for radial structures with 2N

blades at N � 10.
Fig. 10 shows that the optimal length of the central

blade ðeL0Þopt in the design with one level of bifurcation is
smaller than ðeL0Þopt of the design with one loop size. In
the design with one level of bifurcation the length ðeL0Þopt

tends to zero. This means that when N 6 10 the best design
with one level of bifurcation is a radial design with 2N cen-
tral blades.

The lower part of Fig. 10 shows the effect of N on the
ratio (D1/D0)opt in the design with one level of bifurcation
and one loop size. The (D1/D0)opt ratio of the design with



Fig. 11. Optimized structures with the same smallest scale (d) and increasing size (N or R).
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loops is smaller. See again the discontinuity at N ffi 10,
which is due to the disappearance of L0,opt when N 6 10.
Fig. 11 shows examples of the optimized structures docu-
mented in Figs. 9 and 10. The smallest length scale (d) is
the same in every design, while N (or R) varies. When N

(or R) is fixed the global performance increases from left
to right.

4. Two loop sizes, two branching levels

Considerably more complicated than the configuration
optimized until now is the configuration of Fig. 12, where
there are two characteristic loops, both quadrilateral.
One loop has two radial blades L0 and two branches L1,
while the other has two branches L1 and two branches
L2. The respective thicknesses of the blades are D0, D1

and D2. The number of kp points on the rim (N) is the same
as the number of radial blades. The disc radius is R0, and,
according to the first of Eq. (7), the dimensionless lengths
of the design are ðeLi; eDiÞ ¼ ðLi;DiÞ=R0. The relative amount
of high-conductivity material, /, is defined in a way that is
consistent with Eqs. (2)–(4), namely

/ ¼ N

pR2
0

ðD0L0 þ 2D1L1 þ 2D2L2Þ ð10Þ

When /, N and kp/k0 are fixed, the design has four degrees
of freedom, two length ratios, and two thickness ratios, for
example, eL0, eL2, D1/D0 and D2/D0. We simulated steady
conduction with uniform heat generation in a very large
number of configurations, and we identified the changes
in geometry that cause decreases in the hot spot tempera-
ture eT max, regardless of its location. We conducted this
search hierarchically, in four nested levels.

At the innermost level, we fixed eL0, D1/D0 and D2/D0,
and varied eL2 until eT max reached its lowest value. An exam-
ple of a search at this level is shown in Fig. 12. Noteworthy
is the shallowness of the minimum exhibited by eT max. This
means that the accurate selection of the most peripheral
length eL2 is not a critical design decision. This quality
(robustness) of complex flow structures was encountered
before, for example in the performance of conduction trees
with two or more levels of pairing or bifurcation [2]. It was
found that complex flow structures in which not every
feature is optimized perform at nearly the same level as
fully-optimized structures.

At the next level, the optimum identified at the first level
½ðeT maxÞmin� was generated for a new class of configurations
in which D2/D0 varied (in addition to eL2), while eL0 and
D1/D0 remained fixed. In this way, we found how
ðeT maxÞmin varies with D1/D0, and were able to determine
the design with the smallest of all the ðeT maxÞmin values,
which is labeled ðeT maxÞmm. The optimal ratio D2/D0 deter-
mined in Fig. 13 is labeled (D2/D0)o.

The procedure used in Figs. 12 and 13 was repeated by
keeping eL0 constant and varying the ratio D1/D0. The
results are summarized in Fig. 14, which shows that there
is an optimal ratio of blade thicknesses, (D1/D0)o. The
corresponding values at this optimum are the minimized



Fig. 12. Design with loops of two sizes and two levels of bifurcation, and
optimization by varying the peripheral length eL2.

Fig. 13. The minimization with respect to D2/D0 of the global thermal
resistance already minimized with respect to the peripheral length eL2.

Fig. 14. The minimization with respect to D1/D0 of the global thermal
resistance already minimized with respect to eL2 and D2/D0.

Fig. 15. The effect of the central blade length eL0 on the global thermal
resistance already minimized with respect to eL2, D2/D0, and D1/D0.
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global resistance ðeT maxÞmmm, the optimal ratio (D2/D0)oo,

and the optimal length (eL2Þooo.
In the final optimization stage (the outermost loop), we

exploited the fourth degree of freedom, eL0. Fig. 15 shows
that ðeT maxÞmmm decreases monotonically as eL0 vanishes.
In this limit, the optimal two-loop structure becomes the
same as the optimal one-loop structure studied in Section
2. Fig. 16 shows four examples of the structures optimized
in Fig. 15.

We repeated the procedure of Figs. 12–15 by assuming
N values other than 6 for the number of central blades,
namely N = 9, 12, 24, 32, 48 and 64. Fig. 17 is another
example (N = 9) of the structures optimized according to
the procedure used in Figs. 12–15. The results show that
the optimized one-loop design always performs better than
the optimized two-loop design. In other words, the message
of Fig. 15 is general: the optimal L0 is zero, and the opti-
mized two-loop size structure becomes an optimized one-
loop size structure.



Fig. 16. Examples of the optimized structures documented in Fig. 15 (N = 6).

Fig. 17. Examples of optimized structures with N = 9.
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5. Concluding remarks

In this study we looked in detail at how the generation
of tree architectures with loops enhances the performance
of conduction cooling of bodies that generate heat volu-
metrically. The main conclusion is summarized graphically
by Fig. 11. When the smallest length scale of the design (d)
is constrained, performance improves as the structure
evolves from radial to ‘with loops’ and, finally, dendritic.
Well defined boundaries (transitions) separate these classes
of architectures in the performance domain.

In the second part of this study we found that if we com-
plicate the design by using two loop sizes (Fig. 12), the
optimized structure evolves toward one with loops of only
one size (Fig. 15). This evolution, however, is very gentle in
that the global performance and optimized geometric fea-
tures do not change much from one configuration to the
next. There are many configurations with two loop sizes
that perform nearly as well as the best configuration. This
finding is another illustration of how complex flow struc-
tures exhibit robustness, such that in the vicinity of the
equilibrium flow structure [4,5] reside many configurations
that have nearly the same global performance level.

By comparing Fig. 12 with Fig. 3 we see that conduction
trees with two loop sizes are marginally inferior to trees
with only one loop size: then why should designers be inter-
ested in tree structures with multi-scale loops? Robustness
is one reason, because more scales mean more degrees of
freedom en route to the optimized multi-loop structure.
Robustness also means that the global performance of
the cooling structure does not change much if the structure
is damaged locally. Another advantage of the structure
with more loop sizes is that, locally, it spreads the temper-
ature more uniformly even though its peak temperature is
slightly higher than in the corresponding structure with
only one loop size.

Constructal theory and design is now a growing field:
Refs. [3–5,29–33] illustrate the more recent work and new
directions.
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